Радионуклидный состав загрязнений грунтов зависит от источника загрязнений, способа их поступления в грунты (поверхностное, с грунтовыми водами, из подземных захоронений) и сорбционных свойств грунтов. Глубина проникновения радионуклидов с поверхности на легких грунтах - до 50-100 см; основное количество техногенных радионуклидов сосредоточено в верхнем 10-сантиметровом слое почвы.
4.47 Степень радиоэкологической безопасности человека, проживающего на загрязненной территории, определяется годовой эффективной дозой радиоактивного облучения от природных и техногенных источников. При этом доза от техногенных источников согласно НРБ-96 не должна превышать 1 мЗв/год (или 0,1 бэр/год) в среднем за любые последовательные 5 лет, что соответствует рекомендации Международной комиссии по радиологической медицине. Территории, в пределах которых среднегодовые значения эффективной дозы облучения (сверх естественного фона) находятся в диапазоне 5-10 мЗв/год, необходимо относить к территориям чрезвычайной экологической ситуации, а более 10 мЗв/год - к зонам экологического бедствия.
Нормальный естественный уровень мощности эквивалентной дозы (МЭД) внешнего гамма-излучения на открытых территориях в средней полосе России составляет от 0,1 до 0,2 мкЗв/час, а в отдельных, например, в предгорных и горных районах - до 0,3 мкЗв/час. При локальных загрязнениях критерии вмешательства при облучениях, дополнительных к естественному фону, принимаются в соответствии с НРБ - 96, приложение П-5.
4.48 Предварительная оценка радиационной обстановки при инженерно-экологических изысканиях должна проводиться по данным специальных служб Росгидромета, осуществляющих общий контроль за радиоактивным загрязнением окружающей среды, а также по материалам центров санитарно-эпидемиологического надзора Минздрава России и территориальных подразделений специально уполномоченных государственных органов в области охраны окружающей среды, осуществляющих контроль за уровнем радиационной безопасности населения.
4.49 Для выявления и оценки опасности источников внешнего гамма-излучения проводятся:
- радиационная съемка (определение мощности эквивалентной дозы внешнего гамма-излучения);
- радиометрическое опробование с последующим гамма-спектрометрическим или радиохимическим анализом проб в лаборатории (определение радионуклидного состава загрязнений и их активности).
4.50 Маршрутную гамма-съемку территории следует проводить с одновременным использованием поисковых гамма-радиометров и дозиметров. Поисковые радиометры используются в режиме прослушивания звукового сигнала для обнаружения зон с повышенным гамма-фоном. При этом территория должна быть подвергнута, по возможности, сплошному прослушиванию при перемещениях радиометра по прямолинейным или Z - образным маршрутам.
Дозиметры используются для измерения МЭД внешнего гамма-излучения в контрольных точках по сетке, шаг которой определяется в зависимости от масштаба съемки и местных условий. Измерения проводятся на высоте 0,1 м над поверхностью почвы, а также в скважинах, вскрывающих насыпные грунты.
4.51 Усредненное, характерное для данной территории числовое значение МЭД, обусловленной естественным фоном, устанавливается местными органами санэпиднадзора. Участки, на которых фактический уровень МЭД превышает обусловленный естественным гамма-фоном, рассматриваются как аномальные. В зонах выявленных аномалий гамма-фона интервалы между контрольными точками должны последовательно сокращаться до размера, необходимого для оконтуривания зон с уровнем МЭД > 0,3 мкЗв/час.
На таких участках с целью оценки величины годовой эффективной дозы должны быть определены удельные активности техногенных радионуклидов в почве и по согласованию с органами Госсанэпиднадзора решен вопрос о необходимости проведения дополнительных исследований или дезактивационных мероприятий.
Масштабы и характер защитных мероприятий определяются с учетом интенсивности радиационного воздействия загрязнений на население.
4.52 Все результаты измерений следует заносить в полевые журналы и наносить на карту (схему) распределения мощности доз гамма-излучения, с привязкой контрольных точек к топографическому плану местности.
4.53 Объектами радиометрического опробования должны служить почвы и грунты различных типов ландшафтов, поверхностные и подземные воды (в первую очередь, в зоне действующих водозаборов), донные осадки водоемов и техногенные объекты (карьеры, терриконы, свалки, полигоны промышленных и бытовых отходов, склады строительных материалов, а также консервируемые объекты с повышенной радиоактивностью).
4.54 Отбор проб почв и грунтов производится специальными пробоотборниками, соответствующими необходимой глубине отбора. Исследование вертикального загрязнения почв и грунтов производится послойно, лабораторным методом по ГОСТ 30108-94.
Отбор проб воды производится с помощью погружного вибронасоса или шланговым пробоотборником типа "Спрут" с одновременным концентрированием радионуклидов и их извлечением с помощью различных сорбентов.
Отбор и обработка проб и определение изотопного состава и концентраций радионуклидов должны производиться в соответствии с установленными методиками Росгидромета и Минздрава России в лабораториях, имеющих лицензии на производство соответствующих работ.
4.55 Методика отбора проб при радиационном обследовании подворий, а также объем и порядок радиационного контроля для оценки внутреннего облучения и определения радионуклидов в атмосферном воздухе должны приниматься в соответствии с "Методическими рекомендациями по оценке радиационной обстановки в населенных пунктах", утвержденными Минздравом России и Росгидрометом (1990 г.), "Инструкцией по измерению гамма-фона в городах и населенных пунктах" Минздрава СССР N 3255 от 09.04.85 г., а также "Инструкцией и методическими указаниями по оценке радиационной обстановки на загрязненных территориях" Межведомственной комиссии по радиационному контролю природной среды (1989 г.).
4.56 Принятие решений по ограничению облучения населения от природных и техногенных источников ионизирующего излучения при обращении с почвами, грунтами, твердыми строительными, промышленными и другими отходами, содержащими гамма-излучающие радионуклиды, должно осуществляться в соответствии с НРБ-96.
4.57 Источники водоснабжения классифицируются как радиационно-безопасные, если удельные активности радионуклидов в воде не превышают пределов, указанных в п.п.7.2.4, 7.3.6 и приложении П-2 НРБ-96 (ГН 2.6.1.054-96).
4.58 Радоноопасность территории определяется плотностью потока радона с поверхности грунта и содержанием радона в воздухе построенных зданий и сооружений.
Оценка потенциальной радоноопасности территории осуществляется по комплексу геологических и геофизических признаков. К геологическим признакам относятся: наличие определенных петрографических типов пород, разрывных нарушений, сейсмическая активность территории, присутствие радона в подземных водах и выходы радоновых источников на поверхность. Геофизические признаки включают: высокую удельную активность радия в породах, слагающих геологический разрез; уровни объемной активности ОА радона (концентрация) в почвенном воздухе, ЭРОА радона в зданиях и сооружениях, эксплуатируемых на исследуемой территории и в прилегающей зоне. Наличие данных о зарегистрированных значениях эквивалентной равновесной объемной активности (ЭРОА) радона, превышающих 100 , в эксплуатируемых в исследуемом районе зданиях служит основанием для классификации территории как потенциально радоноопасной.
4.59 На предпроектных стадиях должна быть выполнена предварительная оценка потенциальной радоноопасности территории.
На стадии проекта производится уточнение радоноопасности площадки и определение класса требуемой противорадоновой защиты зданий.
4.60 Все результаты обработки измерений физических характеристик среды, определяющих радиационно-экологическую обстановку, должны заноситься в банки данных территориальных изыскательских организаций, территориальных подразделений специально уполномоченных государственных органов в области охраны окружающей среды Государственного комитета Российской Федерации по охране окружающей среды и органов санитарно-эпидемиологического надзора Минздрава России.
4.61 Газогеохимические исследования в составе инженерно-экологических изысканий необходимо выполнять на участках распространения насыпных грунтов с примесью строительного, промышленного мусора и бытовых отходов (участках несанкционированных бытовых свалок) мощностью более 2,0-2,5 м, использование которых для строительства требует проведения работ по рекультивации территории.
4.62 Основная опасность использования насыпных грунтов в качестве оснований сооружений связана с их способностью генерировать биогаз, состоящий из горючих и токсичных компонентов. Главными из них являются метан (до 40-60% объема) и двуокись углерода; в качестве примесей присутствуют: тяжелые углеводородные газы, окислы азота, аммиак, угарный газ, сероводород, молекулярный водород и др. Биогаз образуется при разложении "бытовой" органики в результате жизнедеятельности анаэробной микрофлоры в грунтовой толще на глубине более 2,0-2,5 м. В верхних аэрируемых слоях грунтовых толщ происходит аэробное окисление органики и продуктов биогазообразования.
Биогаз сорбируется вмещающими насыпными грунтами и отложениями естественного генезиса, растворяется в грунтовых водах и верховодке и диссипирует в приземную атмосферу.
4.63 При строительстве на насыпных грунтах возникает опасность накопления биогаза в технических подпольях зданий и инженерных коммуникациях до пожаро-, взрывоопасных концентраций по метану (5-15% при %) *(8) или до токсичных содержаний (выше ПДК) отдельных компонентов.
Потенциально опасными в газогеохимическом отношении считаются грунты с содержанием метана > 0,1% и %; в опасных грунтах содержание метана > 1,0% и до 10%; пожаровзрывоопасные грунты содержат метана > 5,0%, при этом содержание - n x 10%.
4.64 Для оценки степени газогеохимической опасности насыпных грунтов, определения возможности и условий использования данной территории для строительства, а также для разработки системы мер защиты зданий от биогаза и обеспечения экологически благоприятных условий проживания населения проводятся:
различные виды поверхностных газовых съемок (шпуровая, эмиссионная), сопровождающиеся отбором проб грунтового воздуха и приземной атмосферы;
скважинные газогеохимические исследования (с послойным отбором проб грунтового воздуха, грунтов, подземных вод);
лабораторные исследования компонентного состава свободного грунтового воздуха, газовой фазы грунтов, растворенных газов и биогаза, диссипирующего в приземную атмосферу.
4.65 На основе изучения поверхностной и глубинной структуры газового поля следует проводить газогеохимическое районирование территории - выделение в грунтовом массиве зон разной степени опасности.
Экологически опасные зоны (при содержании > 1,0% и > 10%), из которых грунты полностью удаляются с территории строительства и заменяются на газогеохимически инертные, а также потенциально опасные зоны, в которых здания и инженерные сети обустраиваются газодренажными системами или газонепроницаемыми экранами, должны быть показаны на картах и разрезах.
4.66 Исследование вредных физических воздействий (электромагнитного излучения, шума, вибрации, тепловых полей и др.) должно осуществляться в первую очередь при разработке градостроительной документации и проектировании жилищного строительства на освоенных территориях. При этом должны быть зафиксированы основные источники вредного воздействия, его интенсивность и выявлены зоны дискомфорта с превышением допустимого уровня вредного физического воздействия.
4.67 Для предварительной оценки вредных физических воздействий следует использовать материалы территориальных подразделений специально уполномоченных государственных органов в области охраны окружающей среды и центров санитарно-эпидемиологического надзора Минздрава России.
Для непосредственной оценки физических воздействий в составе инженерно-экологических изысканий следует производить специальное измерение компонент электромагнитного поля в различных диапазонах частот, амплитудного уровня и частотного состава вибраций от различных промышленных, транспортных и бытовых источников, шумов и др. силами самой изыскательской организации (при наличии соответствующих лицензий и сертифицированных технических средств) или привлекать специализированные организации, имеющие лицензии на право проведения таких работ и сертификаты на технические средства контроля физических воздействий на окружающую среду и здоровье людей.
4.68 Оценка воздействия электромагнитного излучения на организм человека включает оценку воздействия электрического и магнитного полей, создаваемых высоковольтными линиями электропередачи переменного тока промышленной частоты (ЛЭП), а также высоковольтными установками постоянного тока (электростатическое поле) для электромагнитных полей радиочастот, включая метровый и дециметровый диапазоны волн телевизионных станций.
4.69 Предельно допустимые уровни (ПДУ) напряженности электрических полей промышленной частоты (50 Гц), установленные ГОСТ 12.1.002-84 и СанПиН 2971-84, представлены в таблице 4.5.
4.70 Согласно действующим нормам проектирования границы санитарно-защитных зон (СЗЗ) вдоль высоковольтных ЛЭП устанавливаются по величине Е, которая не должна превышать 1 кВ/м, и отстоят по обе стороны от проекции крайних фазовых проводов на землю на расстояние:
10 м для линий напряжением 20 кВ,
15 м -"- 35 кВ,
20 м -"- 110 кВ,
25 м -"- 150, 220 кВ,
30 м -"- 330, 500 кВ,
40 м -"- 750 кВ,
55 м -"- 1150 кВ
4.71 В СЗЗ запрещено строительство жилых и общественных зданий и отвод земельных участков (включая садовые) для постоянного пребывания населения.