9.3.55 Технологические отверстия и проемы для подключения газоходов в оболочке дымовой трубы должны иметь круглую, овальную или прямоугольную с закругленными углами форму. Для предотвращения потери устойчивости и обеспечения требуемой прочности необходимо предусматривать дополнительное усиление оболочки в местах образования отверстий и проемов.
9.3.56 Марки сталей для дымовых труб должны приниматься в соответствии с СП 16.13330 с отнесением отдельных элементов к следующим группам:
группа 1 - оболочка и наружные ребра жесткости свободностоящих дымовых труб, фланцы и элементы опорных узлов;
группа 3 - внутренние опорные элементы и ребра жесткости;
группа 4 - площадки, лестницы, ограждения.
Примечание - Группы конструкций уточняются в соответствий с уровнем ответственности сооружения с учетом примечания к приложению В СП 16.13330.2011.
9.3.57 Расчет элементов стальных конструкций дымовых труб и определение расчетных сопротивлений материалов при температуре конструкции 300°С и менее следует производить по СП 16.13330.
При температуре поверхности металла более 400°С следует использовать коррозионно-стойкие и жаростойкие стали.
Толщину оболочки ствола трубы следует принимать с учетом внутреннего и наружного припуска на коррозию. Эти припуски должны быть добавлены к толщине оболочки, полученной по результатам расчета на прочность, устойчивость и деформации.
Соединение элементов несущего ствола трубы следует выполнять фланцевыми на болтах или на сварке.
Не допускается использование в качестве наружной теплоизоляции несущих стальных дымовых труб минераловатного утеплителя с газопаропроницаемой обшивкой.
9.3.58 Стальные дымовые трубы при критических скоростях ветра, вызывающих резонансные колебания сооружения, следует рассчитывать на усталость в соответствии с требованиями СП 16.13330. Проверке подлежат стыковые швы стальной оболочки дымовой трубы и швы приварки фланцев к оболочке, при этом в расчете должно учитываться не менее 2 млн циклов нагружения.
9.3.59 Оболочки труб необходимо проверять на общую и местную устойчивость.
Следует предусматривать меры для исключения овализации оболочки. При этом применяются кольцевые ребра жесткости или используется армированный бетон с внутренней стороны оболочки.
Места соединения цилиндрических и конических частей трубы, а также все места изменения толщины оболочки необходимо проверять на прочность с учетом дополнительных напряжений от краевого эффекта.
9.3.60 Необходимо проводить поверочный расчет стальных дымовых труб на резонансное вихревое возбуждение в соответствии с требованиями СП 20.13330.
Для предотвращения резонансного вихревого возбуждения могут быть использованы различные конструктивные мероприятия: установка вертикальных и спиралевидных ребер, перфорация ограждения и установка соответствующим образом настроенных динамических или механических гасителей колебаний.
9.4. Вытяжные башни
9.4.1 Требования настоящего раздела распространяются на проектирование вытяжных башен, предназначенных для удаления вредных негорючих газов, прошедших очистку, но сохраняющих определенную степень агрессивности, влажностью 80-90%, содержащих конденсат и, как правило, не имеющих высокой температуры.
Вытяжные башни могут предназначаться для удаления газов или воздуха, имеющих высокую температуру (до 300°С). При этом следует учитывать возможные изменения расчетных характеристик материалов газоотводящих стволов труб.
9.4.2 К постоянным нагрузкам вытяжных башен относятся их масса, включая фундаменты, масса и давление грунта; к длительным нагрузкам - масса частей сооружения, которые в процессе эксплуатации могут изменяться, средние скорости ветра, при которых возможно возникновение колебаний; к кратковременным нагрузкам - ветровые максимальной интенсивности, обледенение, изменение температуры в пределах одних суток, а также изменение температуры от солнечной радиации; осадки (снег, дождь, отложение пыли); к особым нагрузкам - сейсмические и взрывные воздействия, вызываемые неисправностью или поломкой оборудования, например, отказ от работы автоматических устройств, регулирующих усилие в оттяжках; неравномерность осадки основания.
При расчете каркасов вытяжных башен высотой до 300 м коэффициент надежности по ветровой нагрузке следует принимать равным 1,4 для башен нормального и пониженного уровня ответственности и равным 1,5 для башен повышенного уровня ответственности; для башен высотой более 300 м - соответственно коэффициенты 1,5 и 1,6.
9.4.3 При определении нагрузки от массы следует принимать следующие значения коэффициентов надежности по нагрузке :
фасонных частей и узлов - 1,2;
оборудования и массы несущих конструкций - 1,1 при расчете на прочность и 0,9 при расчете на опрокидывание и отрыв;
оттяжек мачт - 1,0.
9.4.4 При расчете на ветер следует учитывать воздействие максимальных величин скорости ветра, наблюдаемых при штормах большой длительности, максимальных в некоторых зонах, но неравномерных по высоте скоростях ветра, возникающих в пограничном слое атмосферы вследствие мезоструйных течений, локальных воздействий ветра при локальных штормах, вихревых шквалах и т.д., пульсационных воздействий ветра.
При расчете башен труб, имеющих несколько газоотводящих стволов, нагрузку на сооружение от воздействия ветра следует увеличивать за счет взаимного влияния друг на друга близко расположенных (на расстоянии менее 5 м или менее 8 диаметров стволов) газоотводящих стволов.
Для башен, имеющих переломы пояса, при расчете раскосов и распорок необходимо учитывать зональное действие ветра с учетом возможного спада ветровой нагрузки.
Нормативная ветровая и гололедная нагрузка, климатические воздействия определяются согласно СП 20.13330.
9.4.5 Несущие стальные стволы вытяжных башен следует проектировать по СП 16.13330.
Вытяжные башни высотой более 210 м надлежит проектировать по специально разработанным техническим условиям, содержащимся в задании на проектирование.
9.4.6 В вытяжной башне допускается установка одного или нескольких газоотводящих стволов. Один газоотводящий ствол должен быть размещен внутри несущей башни; при наличии нескольких газоотводящих стволов допускается размещать все газоотводящие стволы внутри несущей башни или часть стволов - внутри башни, а часть - с ее внешних сторон.
9.4.7 Размеры газоотводящего ствола рекомендуется определять по технологическим расчетам, соблюдая требования санитарных норм предельных концентраций вредных выбросов в атмосферу, и принимать по таблице 15.
В реальных проектах возможны другие диаметры стальных труб.
Таблица 15
Высота, м | Внутренний диаметр, м |
45 | 0,6; 0,9; 1,2; 1,5 |
60 | 0,6; 0,9; 1,2; 1,5; 1,8; 2,4 |
75 | 1,5; 1,8; 2,4; 3; 3,6 |
90 | 1,5; 1,8; 2,4; 3; 3,6; 4,8; 6 |
120 | 1,8; 2,4; 3; 3,6; 4,8; 6; 7,2 |
150 | 1,8; 2,4; 3; 3,6; 4,8; 6; 7,2 |
180 | 1,8; 2,4; 3; 3,6; 4,8; 6; 7,2 |
210 | 1,8; 2,4; 3; 3,6; 4,8; 6; 7,2 |
240 | 3,6; 4,8; 6; 7,2 |
Примечание - В целях использования существующего оборудования, применяемого для изготовления газоотводящих стволов из конструкционных полимерных материалов, допускается принимать независимо от высоты ствола следующие дополнительные размеры внутренних диаметров, м: для стволов из стеклопластика - 1,0; 1,6; 2,0 и 3,2; для стволов из текстофаолита - 1,2; 3,0; 3,8; 4,5 и 7,0. |
9.4.8 Форму несущей вытяжной решетчатой башни и ее размеры следует определять с учетом обеспечения экономии стали, технологичности изготовления, условий принятого метода монтажа, рационального размещения башни на генплане и удобства эксплуатации.
9.4.9 Несущую башню следует проектировать в виде сочетания призматической (верхней) и пирамидальной (нижней) частей с тремя, четырьмя гранями и более, в отдельных случаях - целиком призматической или пирамидальной.
9.4.10 Разница уровней верха газоотводящего ствола и верха несущей башни должна быть в пределах 2-2,5 диаметра газоотводящего ствола, но не более 8-10 м, в конкретных случаях высота выступающих стволов определяется по конструктивным и архитектурным соображениям. При выполнении газоотводящего ствола из полимерных материалов разница определяется конструктивно с повышенными требованиями к антикоррозионной защите верхней площадки башни.
9.4.11 Наименьший габаритный размер несущей башни в нижнем основании следует назначать, как правило, не менее 1/10 ее высоты.
Наименьший габаритный размер несущей башни в верхнем основании следует определять по условиям размещения требуемого (по заданию на проектирование) числа газоотводящих стволов и лифта, а также необходимых проходов для производства ремонтных работ. В случае стесненного габарита верхней части башни (при большом диаметре газоотводящего ствола или необходимости размещения нескольких газоотводящих стволов внутри башни и стесненных условиях генплана) для проходов допускается проектировать выносные площадки-балконы. Ширина проходов должна быть не менее 0,7 м.
9.4.12 Расстояния между диафрагмами четырех- и многогранных башен следует назначать не более трех размеров среднего поперечного сечения секции башни, а также в местах перелома пояса. В верхних секциях башни допускается установка диафрагм по одной на каждую секцию башни, но не более 12 м.
Примечание - В верхних сечениях башни допускается установка диафрагм по одной на каждую секцию башни (при высоте секции не более 12 м).
9.4.13 Диафрагмы надлежит использовать для горизонтального опирания газоотводящего ствола и как площадки, необходимые в эксплуатационных целях для обеспечения проходов вокруг газоотводящих стволов к поясам и узлам решетки несущей башни. Настилы должны иметь отверстия для удаления с их поверхности атмосферных осадков.
9.4.14 Марки сталей для несущей решетчатой башни следует принимать в соответствии с СП 16.13330 с отнесением отдельных элементов конструкции башни к следующим группам:
группа 1 - пояса несущей башни, включая фланцы, опорные узлы и анкерные устройства, узловые фасонки;
группа 2 - элементы решетки; балки, площадки-диафрагмы, непосредственно воспринимающие собственный вес газоотводящего ствола;
группа 3 - балки, площадки-диафрагмы, не воспринимающие вертикальную нагрузку от газоходов;
группа 4 - опорные плиты, настил площадок, лестницы, ограждения.