Для значений
, меньших 2, в форме С должен быть проставлен прочерк.
7.2.11 Исправленные или исключенные данные
Поскольку некоторые изданных могут быть исправлены или исключены на основании тестов, описанных в 7.1.3, 7.3.3 и 7.3.4, значения
,
и
, используемые для окончательного определения прецизионности и общего среднего, могут отличаться от значений, соответствующих исходным результатам измерений, зафиксированным в формах А, В и С (рисунок 2). Следовательно, при представлении в отчете (докладе) окончательных значений прецизионности и правильности необходимо всегда точно определять, какие данные, если таковые имеются, были исправлены или исключены.
7.3 Анализ данных на совместимость и наличие выбросов
См. стандарт ASTM Е 691-87 [2].
Исходя из данных, собранных на различных уровнях, нужно оценить стандартные отклонения повторяемости и воспроизводимости. Наличие отдельных лабораторий или значений, которые представляются несовместимыми со всеми остальными лабораториями или значениями, может изменить оценки, так что решения об исключении данных нужно принимать только после тщательного анализа. Вводят два подхода к принятию таких решений:
a) графический анализ совместимости;
b) статистическое тестирование выбросов.
7.3.1 Графический анализ совместимости
Используют две меры, носящие названия статистик Манделя h и k. Можно отметить, что помимо отображения вариабельности (непостоянства результатов) метода измерений, они помогают оценить лаборатории.
7.3.1.1 Сначала для каждой лаборатории рассчитывают статистики межлабораторной совместимости h посредством деления средних различий в базовых элементах (среднее значение для базового элемента минус общее среднее значение для данного уровня) на стандартные отклонения средних значений в базовых элементах (для данного уровня)
|
239 × 104 пикс.   Открыть в новом окне
|
|
, (6)
где
определены в 7.2.9, а
- в 7.4.4.
Затем значения
для каждого базового элемента наносят на диаграмму в последовательности увеличения индекса i, так чтобы каждому номеру лаборатории соответствовала группа значений
, относящихся к разным уровням (см. рисунок В.7).
7.3.1.2 Далее рассчитывают статистики внутрилабораторной совместимости k путем вычисления внутриэлементного стандартного отклонения
для каждого уровня и последующего вычисления значений
(7)
для каждой лаборатории в пределах каждого уровня.
Наконец значения
для каждого базового элемента наносят на диаграмму в последовательности увеличения индекса i, так чтобы каждому номеру лаборатории соответствовала группа значений
, относящихся к разным уровням (см. рисунок В.8).
7.3.1.3 Изучая диаграммы для h и k, можно отметить, что наглядные представления результатов для отдельных лабораторий заметно отличаются от других. Это выражается в последовательно высокой или низкой внутриэлементной вариации и/или в последовательно высоких или низких средних значениях для базовых элементов по многим уровням. С такими лабораториями нужно установить контакт, чтобы постараться выяснить причину расхождений.
На основании полученных сведений эксперт по статистике может:
a) сохранить на данный момент результаты лаборатории;
b) попросить лабораторию выполнить измерение заново (если это возможно);
c) исключить данные лаборатории из анализа.
7.3.1.4 В диаграммах для h можно увидеть различные проявления. В одном случае все лаборатории могут иметь как положительные, так и отрицательные значения h на различных уровнях эксперимента. В другом случае отдельные лаборатории могут иметь тенденцию к представлению либо только положительных, либо только отрицательных значений h, и количество лабораторий, дающих отрицательные значения, приблизительно равно количеству лабораторий, дающих положительные значения. Ни одно из этих проявлений не является необычным или требующим изучения, хотя во втором случае может возникнуть мысль о существовании в лаборатории некоего общего источника систематической погрешности. Однако если все значения h для одной лаборатории имеют один знак, а для прочих лабораторий - другой, то в этом случае необходимо попытаться найти причину. Также нужно искать причины расхождений, если значения h для лаборатории, во-первых, являются сравнительно большими и, во-вторых, неким систематическим образом зависят от уровня эксперимента. На диаграммах для h проводят линии, соответствующие индикаторам, представленным в 8.3 (таблицы 6 и 7). Эти индикаторные линии служат ориентирами при анализе диаграмм.
7.3.1.5 Если одна из лабораторий выделяется по статистике k, имея при этом много больших значений, то должна быть установлена причина этого, указывающая на худшую повторяемость по сравнению с другими лабораториями. Например, лаборатория могла бы иметь последовательно меньшие значения k, если бы не влияли такие факторы, как завышение при округлении своих данных или недостаточная чувствительность в диапазоне измерений. На диаграммах для k также проводятся линии в соответствии с индикаторами, представленными в 8.3 (таблицы 6 и 7), служащие ориентирами при анализе диаграмм.
7.3.1.6 Когда из части диаграммы для h или k, относящейся к некоей лаборатории, видно, что некоторые значения близки к критическим, т.е. соответствующим индикаторным линиям, нужно рассмотреть всю диаграмму для уровня. Нередко значение, представляющееся большим в части диаграммы, относящейся к лаборатории, оказывается в разумных пределах совместимым со значениями для других лабораторий на том же уровне. Однако если обнаруживается, что оно сильно отличается от значений для других лабораторий, то необходимо попытаться выяснить причину.
7.3.1.7 В дополнение к диаграммам h и k гистограммы средних значений и расхождений для базовых элементов могут показать наличие, например, двух несовпадающих подмножеств результатов измерений. Такой случай потребовал бы специального подхода, поскольку общий основной принцип, лежащий в основе методов, описываемых здесь, предполагает единственное множество с унимодальным распределением.
7.3.2 Статистическое тестирование выбросов
7.3.2.1 Для анализа данных на наличие выбросов рекомендуется следующая методика.
a) Для идентификации выбросов применяют критерии, приведенные в 7.3.3 и 7.3.4:
- если значение меры, определяемой статистическим критерием (значением тестовой статистики), меньше (или равно) 5%-ного критического значения тестовой статистики (критического значения при 5%-ном уровне значимости), то тестируемую позицию признают корректной;
- если значение тестовой статистики больше 5%-ного критического значения и меньше (или равно) 1%-ного критического значения, то тестируемую позицию называют квазивыбросом и отмечают одной звездочкой;
- если значение тестовой статистики больше 1%-ного критического значения, то тестируемую позицию называют статистическим выбросом и отмечают двумя звездочками.
b) Далее проводят исследование с целью выяснения, могут ли квазивыбросы и/или статистические выбросы быть объяснены какой-либо технической ошибкой, например:
- ошибкой при выполнении измерения;
- элементарной опиской при переписывании результата измерений;
- анализом не той пробы (образца).
В случае, когда ошибка появилась при расчетах или переписывании, сомнительный результат должен быть заменен правильным значением; когда ошибка являлась следствием анализа не той пробы, результат должен быть помещен в соответствующий ему базовый элемент. После того, как такого рода коррекция будет произведена, исследование на предмет квазивыбросов или выбросов должно быть повторено. В случае, если объяснение технической ошибки таково, что оно свидетельствует о невозможности замены сомнительного результата измерений, он должен быть исключен как "подлинный" выброс, не имеющий отношения к правильно проводимому эксперименту.
c) Когда какие-либо квазивыбросы и/или статистические выбросы остаются необъясненными или исключенными в качестве принадлежащих к выпадающей лаборатории, квазивыбросы сохраняют в качестве корректных позиций, а статистические выбросы исключают, если только эксперт по статистике не решит оставить их, имея на это соответствующие основания.
d) В случае, когда после вышеописанной процедуры данные для базового элемента были исключены для формы В на рисунке 2, то тогда должны быть также исключены соответствующие данные для формы С на рисунке 2 и наоборот.
7.3.2.2 В 7.3.3 и 7.3.4 представлены два типа критериев. Критерий Кохрена предназначен для обработки внутрилабораторных расхождений результатов измерений и должен применяться в первую очередь, после чего должны быть приняты корректирующие меры, в случае необходимости, с повторением измерений (испытаний). Другой критерий (Граббса) главным образом предназначен для обработки межлабораторных расхождений, а также может использоваться (если
) в случаях, когда проверка с применением критерия Кохрена вызвала подозрение в том, что высокая внутрилабораторная вариация обусловлена только одним из результатов измерений в базовом элементе.
7.3.3.1 В настоящем стандарте предполагается, что между лабораториями существуют лишь небольшие различия во внутрилабораторных расхождениях. Опыт, однако, показывает, что дело обстоит не всегда так, поэтому для проверки справедливости этого предположения нужна количественная оценка. Для данной цели могли бы быть использованы несколько критериев, но был выбран критерий Кохрена.
7.3.3.2 Для совокупности из p стандартных отклонений
, рассчитанных исходя из одного и того же количества (n) результатов испытаний в базовых элементах, тестовая статистика Кохрена имеет вид