Актуальные цены на услуги геодезистов в Москве и Московской области в 2024 году.
Прямая геодезическая задача состоит в том, что по известным координатам начального пункта А(хА,уА), линии АВ, дирекционному углу этой линии αАВ и ее горизонтальному проложению sАВ - вычисляют координаты конечной точки В(хВ, уВ). Прямая геодезическая задача решается разными способами, один из них это онлайн решение, которым может воспользоваться любой кому лень разбираться с формулами.
Для точек, расположенных на сфероиде, решение данной задачи представляет значительные трудности. Для точек на плоскости она решается следующим образом.
Дано: Точка А( XA, YA ), SAB и αAB.
Найти: точку В( XB, YB ).
Непосредственно имеем:
ΔX = XB – XA ;
ΔY = YB – YA .
Разности ΔX и ΔY точек последующей и предыдущей называются приращениями. Они представляют собой проекции отрезка АВ на соответствующие оси координат. Их значения находим из прямоугольного прямоугольника АВС:
ΔX = SAB · cos αAB ;
ΔY = SAB · sin αAB .
Так как в этих формулах SAB всегда число положительное, то знаки приращений ΔX и ΔY зависят от знаков cos αAB и sin αAB. Для различных значений углов знаки ΔX и ΔY представлены в таблице ниже.
Таблица знаков приращений координат ΔX и ΔY
Приращения | Четверть окружности в которую направлена линия | |||
I (СВ) | II (ЮВ) | III (ЮЗ) | IV (СЗ) | |
ΔX | + | – | – | + |
ΔY | + | + | – | – |
При помощи румба, приращения вычисляют по формулам:
ΔX = SAB · cos rAB ;
ΔY = SAB · sin rAB .
Знаки приращениям дают в зависимости от названия румба.
Вычислив приращения, находим искомые координаты другой точки:
XB = XA + ΔX ;
YB = YA + ΔY .
Таким образом можно найти координаты любого числа точек по правилу: координаты последующей точки равны координатам предыдущей точки плюс соответствующие приращения. Прямая геодезическая задача чаще всего используется при вычислении координат в теодолитном ходе.
Комментарии
Авторизуйтесь или зарегистрируйтесь чтобы оставить комментарий.