А.4 С помощью программного обеспечения проводится централизованный опрос всех датчиков с периодом, заданным в Программе мониторинга. Обмен запросами между элементами системы происходит по радиоканалу с помощью приемопередающей аппаратуры. Данные, полученные от датчиков, в автоматическом режиме сравниваются с расчетными и предельными допустимыми значениями. В случае превышения заранее установленных пороговых значений диспетчеру подается соответствующий сигнал. Далее диспетчер передает сигнал остановки надвижки пролетного строения моста оператору, который осуществляет выключение домкратов. Для максимально быстрой реакции на превышение предельных значений может быть настроено автоматическое отключение толкающих домкратов. В этом случае сигнал остановки формирует программа после обработки полученных от датчиков данных.
С помощью системы мониторинга осуществляется оперативное управление процессом производства работ. При этом данные, полученные в ходе отдельных этапов надвижки, сохраняются в базе данных для возможности последующей обработки и формирования необходимой отчетной документации.
А.5 Примерный состав оборудования, которое может применяться для мониторинга состояния эксплуатируемого вантового моста, показан на рисунке А.2.
1654 × 597 пикс.   Открыть в новом окне |
Условные обозначения | |||
- сервер | - метеостанция | - тензометр | - навигационный модуль |
- акселерометр | - видеокамера | - инклинометр |
Рисунок А.2 - Схема расположения оборудования системы
мониторинга на эксплуатируемом вантовом мосту
Состояние пилонов оценивается с помощью инклинометров и спутниковых навигационных модулей. Инклинометры, установленные в нескольких точках, передают информацию о конфигурации пилонов по высоте. Положения верхних точек пилонов определяют с помощью навигационных модулей.
Изменение натяжения вант определяется на основе анализа частот их собственных колебаний, которые измеряются с помощью акселерометров.
С помощью тензометров контролируется напряженно-деформированное состояние пролетного строения.
Метеостанция передает информацию о погоде для возможности последующего анализа данных, полученных в разных условиях.
Для определения положения временной нагрузки на мосту применяются видеокамеры.
Все установленные приборы объединяются в единую сеть с помощью общей шины, которая прокладывается в диспетчерский пункт и подключается к серверу. При этом, между сервером и датчиками могут устанавливаться дополнительные блоки (на рисунке не показаны), осуществляющие управление обособленными группами датчиков, предварительную обработку данных и т.п.
Сбор, обработка и накопление данных проводятся с помощью программного обеспечения, установленного на сервере.
Информация о состоянии конструкций доступна не только диспетчеру, но и всем заинтересованным организациям, для которых настроена ретрансляция результатов измерений через сеть Интернет.
Приложение Б (справочное) Проведение динамического мониторинга
Б.1 Цель проведения измерений в процессе вибродиагностики моста - получение инструментальной информации, которая в максимальной степени характеризует его техническое состояние. Наиболее полный вид информации, получаемый при проведении динамической диагностики мостов, - АФЧХ динамического прогиба, м/тс (метр прогиба на тонну динамического усилия). Эта передаточная функция является целевой, как при разработке МКЭ-моделей сооружений, так и при проведении работ на мосту. Матрица передаточных функций для множества точек позволяет получать достаточно полную информацию о спектре форм колебаний (мод), которыми обладает конкретное сооружение в текущем состоянии, и является динамическим паспортом моста.
Б.2 Последовательность чередования форм колебаний, их частотные диапазоны и амплитуды колебаний информационно-значимых точек сооружения, функционально зависят от факторов, приведенных ниже:
- параметры, определяющие прочность элементов сооружения;
- особенности расчетных схем работы, как сооружения в целом, так и его узлов, включая фактическую схему взаимодействия с основаниями;
- состояние элементов соединений (узлов);
- наличие конструктивных, технологических или эксплуатационных дефектов;
- климатические условия;
- другие факторы, устанавливаемые в процессе работы.
Б.3 При разработке схемы измерений следует учитывать конструктивные особенности исследуемого моста и расчетные условия взаимодействия его конструктивных элементов. Основные факторы, влияющие на разработку схемы измерений:
- мостовое сооружение - достаточно сложная пространственная конструкция, которая обладает индивидуальной частотно-зависимой последовательностью пространственных (трехмерных) форм собственных колебаний;
- взаимодействие конструктивных частей моста определяется схемой заделки, неподвижного и подвижного шарнирного соединения;
- большинство несущих конструктивных элементов моста могут рассматриваться, как композитные;
- влияние грунтов основания и насыпей подходов на расчетную схему работы сооружения;
- наличие видимых и невидимых дефектов в элементах моста.
Это приводит к тому, что при разработке схемы проведения измерений, необходимо предусматривать возможность поэтапного исследования особенностей работы сооружения, с тем, чтобы экспериментальные данные каждого этапа измерений могли дополнять друг друга и составлять общую картину динамического отклика сооружения. Все этапы этого исследования могут выполняться в произвольной последовательности, рекомендуемая последовательность приводится ниже.
1-й этап измерений проводится с проезжей части. Измерения выполняются на всех пролетных строениях моста. Эти данные наиболее доступны, как не требующие предварительной подготовки или наличия обустройств, в виде смотровых подмостей, лестниц и т.д. С другой стороны, при проведении работ на проезжей части моста должны предусматриваться измерения не только в плоскости действия основных постоянных и временных нагрузок, но и в поперечном и продольном направлениях, которые позволяют оценить жесткость сооружения в горизонтальной плоскости и жесткость на кручение и сделать предварительные выводы о продольной или поперечной жесткости опор и работоспособности опорных частей, степени заклинивания береговых пролетных строений со стороны насыпей подходов. Для более полной оценки работоспособности пролетных строений, измерения должны проводиться по каждому продольному силовому элементу (балка, ферма), а также в промежуточных точках (плита проезжей части, консоль тротуара и т.д.) по нескольким сечениям. Число исследуемых сечений определяется наличием и преобладанием асимметричных (в продольном направлении) форм собственных колебаний пролетных строений. Наличие в спектре отклика сооружения таких форм колебаний определяется по данным постановочного эксперимента или при анализе предварительной МКЭ-модели.
2-й этап измерений, в зависимости от особенностей конструкции моста, проводится на элементах нижнего пояса силовых конструкций пролетных строений, ригелях и насадках опор, элементах опорных частей, опорах и т.д.
3-й этап измерений, в случае необходимости, проводится для решения частных задач, если проведенный комплекс измерений недостаточен.
Режимы нагружения (для активной вибродиагностики)
Б.4 Режим нагружения определяется следующими основными параметрами:
- частотным диапазоном, в котором проявляются наиболее низкочастотные формы собственных колебаний сооружения. Необходимый частотный диапазон может быть определен на основе анализа предварительной МКЭ-модели моста или опытным путем;
- амплитудой вынуждающего усилия, передаваемого на исследуемое сооружение для возбуждения в нем определенной последовательности чередования форм колебаний. Амплитуда вынуждающего усилия определяется опытным путем и должна быть достаточной для подавления шумового (фонового) воздействия. По двум-трем испытаниям с последовательным увеличением амплитуды воздействия можно судить о линейности работы пролетного строения;
- продолжительностью воздействия, определяемой опытным путем и зависящей от длины и массы пролетных строений, вовлеченных в процесс колебаний, а также от значения фонового воздействия;
- точкой установки возбудителя колебаний на пролетном строении. В большинстве случаев это геометрический центр проезжей части, но при преобладании асимметричных форм колебаний пролетного строения, это может быть 1/4 длины пролета или другая точка, что определяется по предварительной МКЭ-модели или опытным путем.
Б.5 Математический анализ отклика сооружения проводится в несколько взаимосвязанных этапов.
На этапе предварительного моделирования разрабатываются МКЭ-модели пролетных строений, для этого используется проектная документация или результаты обмеров. Цель этого этапа - получение последовательности собственных форм колебаний пролетного строения, которые применяются для разработки программы измерений и режимов нагружения.
Адаптация МКЭ-модели сооружения осуществляется на основе экспериментальных данных, полученных после проведения динамической диагностики, осмотра сооружения и установления причин различия теоретических и экспериментальных данных. Основными причинами могут быть:
- изменение расчетной схемы работы сооружения (заклинивание опорных частей, неравномерное опирание балок пролетного строения, нарушение взаимодействия пролетных строений с насыпями подходов, неразрезность слоев дорожной одежды между пролетами и т.д.);
- особенности работы опор, фундаментов и оснований;
- климатические условия проведения испытаний.
Адаптация достигается исследованием количественной оценки отдельных факторов на несоответствие теоретических и экспериментальных данных, затем методом последовательных итераций проводится адаптация МКЭ-модели сооружения по экспериментальным данным.
В процессе итерационной адаптации проводится усложнение предварительной модели - введение в модель всех пролетных строений, опор, фундаментов и оснований. В конечном итоге разрабатывается полномасштабная математическая модель сооружения.
Конечная цель адаптации МКЭ-модели - получение матрицы теоретических передаточных АФЧХ динамических прогибов, соответствующей матрице АФЧХ, полученной при проведении экспериментальных работ на мосту.
Оценка грузоподъемности моста проводится с учетом действующей нормативной базы. Для этих целей адаптированная МКЭ-модель сооружения изменяется для соблюдения условий проведения расчета по 1-му или 2-му предельному состоянию.