А.5.1 Прерыватели колебаний (гидравлические стопоры) используются для перераспределения усилий в системе с более нагруженных частей сооружения на менее нагруженные. Например, если скальные грунты по оси мостового перехода залегают глубоко, при проектировании моста неразрезной системы целесообразно перераспределить сейсмическую нагрузку от массы пролетного строения с анкерной опоры на все или часть опор моста.
Гидравлические стопоры состоят из заполненного жидкостью полого цилиндра, в котором размещается шток, соединенный с перфорированным диском. Концы цилиндра и штока соединяются с конструкциями моста, могущими совершать перемещения друг относительно друга.
Гидравлические стопоры могут работать в двух режимах (рисунок А.9). Первый режим относится к медленно изменяющимся воздействиям (изменение температуры среды, ползучесть и усадка бетона). При таких воздействиях требуется незначительное усилие для перемещения перфорированного диска в заполненном жидкостью цилиндре. Таким образом, в обычных условиях эксплуатации стопор не ограничивает перемещений соединяемых конструкций и практически не влияет на напряженно-деформированное состояние моста.
При быстрых относительных перемещениях смежных частей моста, возникающих при землетрясениях, стопор блокирует эти перемещения, работая как жесткая связь, соединяющая разделенные деформационным швом части сооружения. Изменение динамической расчетной схемы моста с балочной неразрезной на рамную с продольно-неподвижными опорными частями на всех или части опор может существенно уменьшить усилия в анкерной опоре и повысить сейсмостойкость моста в целом.
![]() | |
988 × 621 пикс.   Открыть в новом окне |
А.5.2 Прерыватели колебаний могут использоваться также при строительстве висячих и вантовых мостов, в особенности в районах прохождения тайфунов, глубоких очагов разрушительных землетрясений и при расположении пилонов в акватории морей, в целях обеспечения динамической устойчивости пилонов моста при воздействии турбулентного воздушного потока, штормовых и сейсмических волн. Прерыватели устанавливают в целях уменьшения периода собственных поперечных колебаний пилонов на период постройки до безопасного уровня. Схема подкрепления пилона вантового моста показана на рисунке А.10.
![]() | |
879 × 690 пикс.   Открыть в новом окне |
А.6 Гасители колебаний
А.6.1 Масса пролетного строения неразрезной системы длиной более 500 м нередко превышает 10 000 т, а сейсмическая нагрузка от этой массы достигает нескольких тысяч тонн. При расчетной сейсмичности 9 баллов приемлемые решения по расходу материалов получаются только в том случае, когда основанием массивного фундамента анкерной опоры служит скальный грунт.
Если прочные коренные породы залегают глубоко, принимают специальные меры для уменьшения сейсмической нагрузки и амплитуд горизонтальных колебаний сооружения. К таким мерам относятся снижение массы пролетного строения за счет использования высокопрочной стали в главных балках, связях и плите проезжей части, распределение продольной сейсмической нагрузки от массы пролетного строения на несколько промежуточных опор, применение антисейсмических устройств для гашения колебаний (демпферов).
А.6.2 Характерный пример применения демпферов - виадук через долину реки в районе сейсмичностью 9 баллов.
Виадук имеет общую длину около 900 м при высоте опор в средней части перехода более 40 м. Пролетное строение запроектировано из стали, имеет коробчатое сечение с верхней ортотропной плитой. Высота главной балки 3,6 м, ширина проезжей части 11,5 м. Деформационный шов, устроенный над одной из промежуточных опор, делит пролетное строение на две неравные части длиной 810 и 100 м.
Большая секция пролетного строения запроектирована в виде неразрезной балки, перекрывающей десять пролетов длиной от 53 до 126 м. Масса неразрезной секции составляет 10 785 т.
Коренные породы в створе виадука представлены мергелем, песчаником и аргиллитом. В зоне выветривания на глубину до 5 м от кровли скальные грунты имеют низкую прочность.
На склонах долины коренные породы перекрываются чехлом делювиальных и оползневых накоплений, представленных суглинками и глинами с включением обломочного материала. Мощность четвертичных отложений колеблется от 3 до 17 м.
Пойму и русло реки слагают аллювиальные и аллювиально-лиманные отложения (гравий, галька, глина). Вскрытая разведочными скважинами мощность галечников достигает 29 м.
Основная часть виадука запроектирована в виде рамно-неразрезной системы с неподвижными опорными частями на семи промежуточных опорах большой высоты и подвижными опорными частями на четырех крайних низких опорах (рисунок А.11).
![]() | |
1350 × 550 пикс.   Открыть в новом окне |
Колебания опор с большой амплитудой вдоль оси перехода способны повредить опорные части, деформационные швы и другие конструкции виадука. Для уменьшения сейсмической нагрузки от массы пролетного строения и ограничения амплитуды колебаний предельно допустимым значением 25 см между неразрезным пролетным строением и жесткими концевыми опорами установлены гидравлические гасители колебаний.
А.6.3 Сущность работы гидравлического демпфера представлена зависимостью его реакции от скорости нагружения. Из графика (рисунок А.12) видно, что демпфер слабо реагирует на медленное нагружение (на изменение длины пролетного строения от перепада температур в течение суток), но создает значительное сопротивление сейсмическим колебаниям, которые в данном случае имеют скорость около 0,5 м/с.
![]() | |
1127 × 456 пикс.   Открыть в новом окне |
Гасители колебаний выпускаются для осевых нагрузок до нескольких сотен тонна-сил и возможных относительных перемещений соединяемых частей моста до 450 мм и более. От этих исходных данных зависят диаметр цилиндрического корпуса и его длина.
Корпус демпфера имеет надежную защиту от неблагоприятных атмосферных воздействий. Для защиты от коррозии наружные поверхности корпуса покрываются грунтовкой из слоя цинка с последующей окраской двумя слоями краски. Внутренние поверхности демпфера имеют специальное покрытие, разработанное предприятием-изготовителем. В качестве рабочей жидкости используется силиконовое масло, содержащее присадки для защиты от старения. Рабочая жидкость имеет характеристики, малоизменяющиеся в широком диапазоне температур.
Демпферы запроектированы в предположении, что температура воздуха изменяется в пределах от минус 20°С до плюс 50°С. При землетрясении в течение короткого промежутка времени гашения колебаний моста температура рабочей жидкости может возрасти до 200°С.
Расчетный срок службы гидравлических демпферов не менее 30 лет. Устройства не требуют обслуживания при эксплуатации, но предприятие-изготовитель рекомендует проводить осмотр демпферов с периодичностью один раз в три года.
А.7 Амортизаторы
А.7.1 Амортизаторами являются конструкции и устройства, позволяющие уменьшать сейсмическую нагрузку от масс и регулировать распределение нагрузки между частями сооружения. К амортизаторам относятся гибкие опоры с парными стойками, резиновые опорные части, устройства с рабочим органом в виде тарельчатых пружин и ряд других конструкций.
При строительстве опор виадуков в сейсмических районах применяют рамные железобетонные опоры, имеющие вертикальные или наклонные стойки из сборного (монолитного) железобетона. Такое конструктивное решение позволяет уменьшить массу опор и получить оптимальные динамические характеристики виадука, что дает возможность максимально понизить сейсмическую нагрузку от масс опор и пролетного строения.
Виадуки с рамными опорами часто сооружаются в районах пересечения железной дорогой горных хребтов. Опоры таких мостов обычно проектируют в виде одноярусных и двухъярусных пространственных рам. В качестве стоек опор используют железобетонные столбы диаметром поперечного сечения 0,8 м и длиной 15 м. Плиты фундаментов, горизонтальные диафрагмы и насадки выполняют из монолитного железобетона. Высоту рамных опор обычно принимают до 35 м от обреза фундаментов.
А.7.2 Конструкции железобетонных опор с телом в виде монолитных парных стоек применяют при строительстве эстакад и виадуков на автомобильных и городских дорогах.
По расчету на температурное и сейсмическое воздействия промежуточные опоры рамно-неразрезной части виадука (рисунок А.13) приняты гибкими в виде рамных надстроек над цоколем с небольшой жесткостью стоек в направлении оси перехода (высота стоек до 28,5 м; толщина 1,2 м). Верх стоек объединен железобетонным ригелем.
![]() | |
900 × 996 пикс.   Открыть в новом окне |
Сейсмическая нагрузка от масс пролетного строения зависит от периода собственных колебаний сооружения, уменьшаясь примерно в 2,5 раза при увеличении периода от интервала резонансных периодов (0,1-0,5 с для средних грунтов) до периодов, расположенных вне зоны резонансных колебаний (1,2 с и выше).
Назначением высоты гибких стоек в интервале 25-30 м можно получить оптимальные динамические характеристики опоры и существенно снизить напряжения в рамной надстройке и силы (моменты), передаваемые на цоколь и свайное основание (рисунок А.14). В случае применения стоек большей длины усилия в сечениях опоры уменьшаются незначительно, однако повышение гибкости опоры приведет к существенному росту амплитуд колебаний ригеля и повышению напряжений за счет роста эксцентриситета нагрузки от собственного веса пролетного строения.
![]() | |
1302 × 610 пикс.   Открыть в новом окне |
А.8 Комбинированные антисейсмические устройства
А.8.1 К поражающим факторам землетрясений относятся инерционные силы горизонтального и вертикального направлений, сейсмическое боковое давление грунта, сейсмическое давление воды, удары в швах между смежными секциями моста, смещения фундаментов опор из проектного положения при распространении сейсмических волн, тектонические разрывы, оползни береговых склонов, обвалы бортов ущелий, осадки покровных отложений и др. Перечисленные факторы обычно проявляются в различных сочетаниях в зависимости от региональных сейсмотектонических и местных инженерно-геологических условий.
Многофакторный характер сейсмической опасности требует разработки при проектировании мостов комплекса мер антисейсмической защиты. В качестве примера комплексных антисейсмических мероприятий в настоящем приложении рассмотрены меры защиты от землетрясений железнодорожного моста.
Мост сооружен на участке с неблагоприятными тектоническими условиями. По оси моста залегают слабовыветрелые гранодиориты, нарушенные на участке шириной 30 м тектоническим разломом. В зоне разлома скальная порода раздроблена до состояния щебня. Монолитные устои и сборно-монолитные промежуточные опоры вынесены из зоны дробления. Пролеты моста перекрыты стальными фермами с ездой поверху. Фундаменты всех опор массивные мелкого заложения.
С учетом неблагоприятных тектонических условий были разработаны дополнительные меры антисейсмической защиты мостового перехода, направленные против сброса пролетных строений с опор, подбрасывания опорных узлов ферм, обрушения ферм при возможном выходе тектонических разрывов на поверхность участка мостового перехода, а также против повреждения конструкций от ударов ферм в шкафные стенки устоев. Для защиты моста на опорах и пролетных строениях установлены стопорные, анкерные, сцепные и буферные устройства (рисунок А.15).
![]() | |
1321 × 583 пикс.   Открыть в новом окне |
А.8.2 Совмещение в одной конструкции двух и более функций рассмотренных антисейсмических устройств позволяет уменьшить расход материалов на антисейсмическую защиту мостовых сооружений. В связи с этим в мостостроении нашли широкое применение комбинированные устройства.
Для железнодорожных ферм длиной 55 м с ездой поверху было запроектировано комбинированное антисейсмическое устройство, препятствующее сдвигу опорных узлов поперек оси моста и их подбрасыванию. Устройство (рисунок А.16) состоит из нижнего упора, связанного с опорой анкерными болтами диаметром 36 мм, верхнего упора, прикрепленного к ферме высокопрочными болтами диаметром 22 мм, и шпильки диаметром 50 мм. Анкерные болты заделываются с помощью эпоксидной смолы в оголовок опоры. Расход стали в устройствах на защиту одной фермы составляет 1190 кг.
![]() | |
1229 × 1077 пикс.   Открыть в новом окне |
А.8.3 Комбинированное устройство применено также для сталежелезобетонного пролетного строения длиной 45,8 м (рисунок А.17). Эта конструкция защищает пролетное строение от поперечного сдвига и подбрасывания опорных узлов, а также смягчает удары пролетного строения в стопоры. В качестве буферов здесь использованы резинометаллические элементы, работающие на сжатие.
![]() | |
1315 × 1027 пикс.   Открыть в новом окне |
А.8.4 Пролетные строения из пустотных плит длиной от 15 до 18 м могут применяться во всех сейсмически опасных районах. Для закрепления плит от смещения вдоль и поперек оси моста, а также от подбрасывания их при землетрясении в крайних плитах пролетного строения по оси опирания устанавливаются закладные детали, к которым приваривается антисейсмическое устройство с вертикальной трубой на конце (рисунок А.18). Труба надевается сверху на анкерный болт, заделанный в ригеле или насадке опоры. Перемещения плиты относительно насадки в вертикальном направлении ограничиваются шайбой, которая приваривается к анкерному болту на 10 мм выше верхнего конца трубы и закрепляется сверху гайкой. Расход стали на четыре устройства, закрепляющие одно пролетное строение, составляет 181 кг.
![]() | |
1258 × 1143 пикс.   Открыть в новом окне |
Приложение Б
(справочное)
(справочное)