Свод правил СП 268.1325800.2016 "Транспортные сооружения в сейсмических районах. Правила проектирования" (утв. приказом Министерства строительства и жилищно-коммунального хозяйства РФ от 16 декабря 2016 г. N 986/пр) стр. 9

12 Электрификация и электроснабжение железных дорог

12.1 Здания тяговых подстанций должны удовлетворять требованиям к проектированию транспортных зданий, изложенным в СП 14.13330.
12.2 Проектом электрификации железной дороги должна предусматриваться возможность организации резервного электроснабжения контактной сети при выходе из строя тяговых подстанций при землетрясении.
12.3 При проектировании контактной сети электрифицируемых железных дорог в районах сейсмичностью 8 баллов и более рекомендуется предусматривать селективное отключение секции контактной сети при ее повреждении землетрясением.
12.4 Для двухпутных линий при электрификации в районах сейсмичностью 8 баллов и более предпочтение должно отдаваться конструкциям опор контактной сети рамного типа с жесткими поперечинами.
12.5 Линии электроснабжения контактной сети и автоблокировки в районах сейсмичностью 8 баллов и более должны иметь телеуправление из энергодиспетчерского пункта с возможностью переключения на вынужденный режим работы при отключении участков, поврежденных землетрясением, и переходом на резервные схемы.
12.6 При расчетной сейсмичности 9 баллов усилия в элементах крепления, удерживающих от подбрасывания и сдвига трансформаторы и другое оборудование тяговых подстанций, следует принимать соответственно не менее 10% и не менее 30% опорной вертикальной реакции от собственного веса оборудования.
12.7 При назначении размеров фундаментов мелкого заложения опор контактной сети следует обеспечивать устойчивость фундаментов против опрокидывания и сдвига, а также ограничивать эксцентриситет равнодействующей активных сил в плоскости подошвы фундаментов относительно центра тяжести сечения условиями, приведенными в 8.4.12.
Приложение А
(справочное)

Антисейсмические устройства мостов

А.1 Стопоры

Стопоры используются для удержания пролетных строений от сдвига поперек и вдоль оси моста. Конструкция поперечных железобетонных стопоров (рисунок А.1) для применения в районах сейсмичностью 7 и 8 баллов разработана в виде дополнения к типовому проекту пролетных строений длиной от 16,5 до 27,6 м из предварительно напряженного железобетона. Проектом предусматривается армирование подферменных плит промежуточных опор и устоев дополнительными сетками. После установки пролетных строений арматуру стопоров сваривают с выпусками арматуры из подферменной плиты, затем бетонную смесь укладывают в опалубку стопоров.
Расход материалов в железобетонных стопорах значителен. Так, для пролетных строений длиной 27,6 м объем бетона в антисейсмических устройствах на одну промежуточную опору составляет 2,6 или примерно 3% объема железобетона пролетного строения. В стопорах одной опоры устанавливают от 730 до 1158 кг арматуры.
1323 × 833 пикс.     Открыть в новом окне
Испытывая при землетрясении удары со стороны пролетных строений, железобетонные стопоры нередко повреждаются, а при толчках силой 9-10 баллов могут полностью разрушиться. Отказ стопоров влечет за собой сдвиг и обрушение на грунт пролетных строений, в то время как их повреждение приводит лишь к некоторым затруднениям при эксплуатации моста после сейсмического воздействия. Для смягчения ударов между пролетными строениями и стопорами рекомендуется размещать буферы.

А.2 Буферы

А.2.1 В качестве буферов применяют резиновые прокладки, резинометаллические элементы и конструкции из стали с тарельчатыми пружинами.
Возможность использования в антисейсмических устройствах мостов резинометаллических элементов, применяемых в вагоностроении для уменьшения вибраций подвижного состава железных дорог, подтверждена испытаниями этих элементов на сжатие.
Испытания проводили с элементами, каждый из которых представлял собой резиновую прослойку толщиной 40 мм, заключенную между двумя стальными пластинками, которые имеют в плане форму прямоугольника с размерами 220х265 мм (рисунок А.2). Углы пластин закруглены радиусом 30 мм. Очерченные по параболе боковые поверхности резиновой прослойки вогнуты внутрь элемента.
1039 × 813 пикс.     Открыть в новом окне
Для получения необходимой способности к поглощению энергии удара резинометаллические элементы могут собираться в пакеты. В данном эксперименте испытывали пакеты из трех элементов с доведением нагрузки на пакет до 800 кН. Нагрузка прикладывалась ступенями по 100 кН. Каждая ступень нагрузки выдерживалась 3-4 мин. Испытания проводились при температуре 18°С - 20°С.
По результатам эксперимента построена зависимость осевой деформации пакета от сжимающей нагрузки (рисунок А.3). Среднее значение деформации испытанных пакетов при наибольшей нагрузке составило 27 мм. Отклонение для наименее и наиболее жестких пакетов находилось в пределах 15% среднего значения деформации.
1264 × 519 пикс.     Открыть в новом окне
Следует отметить значительную кривизну диаграммы сжатия. Модуль упругости резины в пакете в начале нагружения составлял примерно 35 МПа, а в среднем для всего диапазона нагрузки - 75 МПа.
Повышение жесткости пакета с ростом нагрузки объясняется изменением конфигурации боковых поверхностей резиновых прослоек, увеличением площади их поперечного сечения, а также уменьшением объема микропор резины.
Наибольшая нагрузка воспринималась пакетами без разрушения, несмотря на то что уже при нагрузке 400 кН на боковых поверхностях резиновых прослоек появлялись заметные горизонтальные трещины. В связи с этим пакеты были испытаны на выносливость десятикратным нагружением с доведением силы сжатия за короткий промежуток времени (30 с) до 800 кН с последующей разгрузкой. После этого пакеты вновь подвергались постепенному сжатию с увеличением нагрузки ступенями по 100 кН. Сопоставление диаграмм сжатия, полученных до и после испытаний на выносливость, показало, что резинометаллические элементы в целом сохранили прочность и жесткость после испытаний на выносливость, хотя среднее значение для пяти пакетов наибольшей деформации сжатия уменьшилось примерно на 10%.
Партия из 20 резинометаллических элементов была испытана на сжатие (в том числе при отрицательной температуре минус 30°С) и на сдвиг. Сжатие двух элементов нагрузкой 2200 кН не привело к их разрушению. По свойствам резины срок службы буферов составляет не менее 60 лет.
Проведенные испытания позволяют сделать вывод о том, что резинометаллические элементы можно использовать в буферных антисейсмических устройствах мостов. Принимая во внимание значительный разброс упругих характеристик резины, следует проводить выборочные испытания элементов, предназначенных для установки на больших мостах. Необходимое число буферных устройств и резинометаллических элементов в каждом из них определяется расчетом, учитывающим прочностные и деформативные характеристики элементов.
А.2.2 В качестве буферов применяют также стальные конструкции, рабочим органом которых являются тарельчатые пружины. Буфер железнодорожного моста с пролетными строениями в виде ферм с ездой поверху показан на рисунке А.4.
1188 × 928 пикс.     Открыть в новом окне
На данном объекте буферные устройства установлены в скошенные концы крайних ферм. Каждый буфер выполнен в виде массивного стального сердечника, воспринимающего удар и опирающегося тыльной стороной головки на комплект тарельчатых пружин из рессорно-пружинной стали. Пружины помещены в стальной корпус, защищающий их от атмосферного воздействия и засорения. Корпус буфера крепится болтами к узловым фасонкам фермы. Всего на мосту установлены четыре буферных устройства, рассчитанных на длительную эксплуатацию в условиях сурового климата. Общая масса буферов составляет 700 кг.
1214 × 937 пикс.     Открыть в новом окне
Для изготовления опытной партии тарельчатых пружин для буферов сталежелезобетонных пролетных строений (рисунок А.5) использовалась сталь марки 60С2А по ГОСТ 14959-79. Пружины имели внешний диаметр D = 300 мм, внутренний диаметр d = 122 мм, толщину мм, высоту внутреннего конуса f = 6 мм. Фактические размеры пружин отличались от расчетных в пределах допусков. Пружины испытывались на твердость, жесткость, прочность и выносливость.
Проверка твердости проводилась на трех образцах, изготовленных из той же партии металла, что и пружины, и имеющих с ними одинаковую толщину. Твердость по Роквеллу термообработанных образцов составила от 43 до 45 единиц. Проверка соответствия деформации пружин при предельной рабочей нагрузке (450 кН) требуемому значению 7,8 мм проводилась выборочным контролем 10% пружин партии. Измеренный прогиб комплекта из двух пружин при нагрузке 450 кН в среднем составлял 8,1 мм (рисунок А.6). При этом отклонение контролируемой деформации от расчетного значения было 4% при допускаемом отклонении .
1112 × 631 пикс.     Открыть в новом окне
Прочность пружин проверялась заневоливанием (полным сжатием) комплектов в течение 24 ч. Все три комплекта успешно прошли испытания на полное сжатие (рисунок А.7). После разгрузки пружины не имели трещин и надрывов.
1133 × 835 пикс.     Открыть в новом окне
Проверка выносливости проводилась многократным нагружением (100 циклов) от до кН трех комплектов пружин. Высота внутреннего конуса пружин в свободном состоянии после испытаний на выносливость уменьшилась в среднем на 0,2 мм. Трещин и надрывов пружины не получили. Таким образом, испытаниями было установлено, что партия пружин удовлетворяет требованиям норм к этим изделиям и может быть использована при строительстве в буферных антисейсмических устройствах мостов.

А.3 Анкеры

Вертикальные анкеры устанавливают в целях повышения устойчивости опор и пролетных строений против опрокидывания, а также для предотвращения повреждений конструкций, возникающих при подбрасывании опорных узлов балок, ферм и рам. Горизонтальные анкеры могут использоваться для повышения сопротивления устоев и пролетных строений сдвигу вдоль оси моста в направлении русла.
При расчетной сейсмичности 9 баллов пролетные строения с ездой поверху длиной от 18,8 до 34,2 м закрепляют за середины дом кратных балок. Анкер устроен в виде стальной шарнирной конструкции (рисунок А.8). Масса металла анкерных устройств на одно пролетное строение составляет около 270 кг.
Пролетные строения длиной 45,8 и 55,8 м закрепляются за домкратные балки в местах постановки ребер жесткости с помощью тяг из уголков, заделанных в подферменные плиты опор. Масса металла анкерных устройств на одно пролетное строение длиной 45,8 и 55,8 м составляет примерно 1700 кг.
При совместном учете сейсмической нагрузки и веса железнодорожных ферм с ездой понизу в анкерных устройствах по расчету не возникает растягивающих сил. Поэтому для всей серии этих конструкций в диапазоне пролетов от 33 до 110 м анкерные устройства приняты одинаковыми облегченного типа с массой 336 кг стали, достаточной для предотвращения подбрасывания ферм, оказавшихся поблизости от эпицентра землетрясения.
1238 × 1119 пикс.     Открыть в новом окне
Анкеровка балочных разрезных сталежелезобетонных пролетных строений на автомобильных дорогах осуществляется таким же способом, как для железнодорожных балок и ферм. Для пролетного строения длиной 42,6 м масса анкерного устройства для закрепления одного конца конструкции составляет 122,7 кг.

А.4 Сцепные устройства

А.4.1 Разрезные пролетные строения могут обрушиться из-за сейсмодеформаций грунта и опор, приводящих к горизонтальным перемещениям подферменных плит из проектного положения. При возможных сейсмотектонических и оползневых перемещениях грунта в створе моста, а также при асинхронных колебаниях опор прибегают к уширению подферменных площадок опор или устанавливают сцепные антисейсмические устройства, ограничивающие не только относительные горизонтальные, но и относительные вертикальные перемещения смежных концов соседних ферм (балок). Сцепное устройство рассчитывают так, чтобы оно выдерживало опорную реакцию повисающей конструкции.
А.4.2 Конструктивное решение сцепки в каждом конкретном случае определяется ее функцией и типом пролетного строения. Для объединения металлических и сталежелезобетонных балок со сплошной стенкой обычно используются накладки, прикрепляемые к вертикальным листам главных балок болтами. Отверстия под болты в стенке одной из балок делают овальными, для того чтобы не возникало температурных напряжений в конструкции и обеспечивалась свобода поворота концов пролетного строения. При необходимости соединения сталежелезобетонного пролетного строения с железобетонным или двух железобетонных конструкций сцепное устройство может быть закреплено на железобетонных ребрах или плите.
А.4.3 Сцепные устройства стальных ферм устанавливают в узлах пролетных строений. Типовое сцепное устройство железнодорожных ферм состоит из вертикальных листов, поперечных планок и опорного стержня. Отверстия в узловых фасонках под болты и опорный стержень сверлят по месту с учетом фактического положения пролетных строений. Отверстия под опорный стержень в вертикальных листах сцепного устройства делают овальными. Размеры отверстий подбирают из условия свободы линейных и угловых перемещений соединяемых концов ферм. Диаметр опорного стержня определяют расчетом на срез и смятие под нагрузкой от собственного веса фермы. Масса металла, необходимого для сцепки ферм с ездой поверху длиной 55 м, составляет 900 кг.

А.5 Прерыватели колебаний